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Online Resource Allocation via Posted Prices
e Known at the beginning:

- single type of resource with capacity 1.
- supply cost f(-) w.r.t. total allocated resources.
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Supply Costs in Different Forms

- Cloud resource allocation with operating costs, e.g., power v.s. CPU utilization.
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Supply Costs in Different Forms

- Cloud resource allocation with operating costs, e.g., power v.s. CPU utilization.

Power Delay

Strictly-convex f

Increasing Marginal Costs f’

Frequency Throughput

- Network resource allocation with link costs, e.g., delay v.s. throughput.
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Competitive Ratio

- Offline Setting: knows all arrival information:

Softine(A) = ) vux; —f< Y fnxf1>,
}

ne{1,2,- ne{1,2,---}

where A = {(vq,71), (v2,72), - - - } denotes an arrival instance.
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- Offline Setting: knows all arrival information:
Soffine(A) = ), vax; —f( Y. an;§> ,
ne{1,2,--} ne{1,2,-}

where A = {(vq,71), (v2,72), - - - } denotes an arrival instance.

- Online Setting: develop posted prices, {p, }v,, whose competitive ratio:

A o Soffline (A)

n©
all possible A Sonﬁne(¢4)

is bounded by a constant independent of the number of agents.
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Pricing Function

- Design a pricing function ¢ : [0,1] — R*:

Pn = ¢(yn)
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Design Principles

e P1: accept agents regardless of their value

densities up to a certain threshold w € (0, 1].
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densities up to a certain threshold w € (0, 1].

- ¢(y) =pmustholdiny € [0, w].

e P2: increase the price when fewer units are
remaining.
- ¢(y) must be increasing iny € [w, 1].

e P3: sell the resource at a profitable price.
- ¢(y) > f'(y) must hold for all y € [0,1].
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Design Parameters

p if y € [0,w)
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The flat segment w and the increasing segment ¢(y).
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Main Results: Sufficient Conditions

e Flat-Segment: w should satisfy

[t_?w ~f(w) 2 Th(p) andf(w) <p,

where h(p) is defined as h(p) = max py — f(y).
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Main Results: Sufficient Conditions

e Flat-Segment: w should satisfy

[yw ~f(w) > Th(p) andf(w) < p,

where h(p) is defined as h(p) = max py — f(y).

ye[01]

e Increasing-Segment: ¢ should satisfy

{W@)SwlﬂLﬂ@yekmU,

h’(st)(y))
¢(w) =p, (1) > p.
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Online Primal-Dual Approach
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Main Results: Optimality and Uniqueness
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e Optimality: the optimal competitive ratio is
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Remarks: i) w, depends on f,p, and p and ii) [(p{k(y) =, - <I>((p*,y)}
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General Cases: Strictly-Convex Supply Costs
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Special Cases: Zero and Linear Supply Costs

- Given § = {f,p,p} with f(y) = qy, where g > 0, there exists a unique ¢.:

r_) Ify S [O,w*),
¢:(y) =1 (p—4q) exp (w%—l>+q ify € [ws, 1],
+oo ify € (1,+00),

such that PMy, is a.-competitive, where a. and w. are given by

w=1+m (22, - L
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- Given § = {f,p,p} with f(y) = qy, where g > 0, there exists a unique ¢.:

I_j Ify S [O,w*),
¢:(y) = (p—1q) exp (w%—l>+q ify € [w.,1],
+o0 if y € (1,+00),

such that PMy, is a.-competitive, where a. and w. are given by

w=1+m (22, - L

Remark: the logarithmic competitive ratio is not new, see [42] for details.
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A Unified Approach

- zero supply costs: w, =1 +1n (%) when f(y) = 0 (e.g., [41], [42]).

- linear supply costs: &, =1+ 1In (%) when f(y) = qy with g > 0 (e.g., [41]).

h(p)

- strictly-convex supply costs: «, = m



A Case Study: Quadratic Supply Costs
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Figure: lllustration of &, when f(y) = 3. Left: p = 03. Right:p = 1.1.
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Conclusions

- A unified approach for online resource allocation.

- characterization of optimal competitive ratios.
- computation of optimal pricing functions.
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Conclusions

- A unified approach for online resource allocation.

- characterization of optimal competitive ratios.
- computation of optimal pricing functions.

- A general model that can be extended to more complex settings.

- multi-knapsack problems.
- multi-unit auctions and combinatorial auctions.
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