Mechanism Design for Online Resource Allocation: A Unified Approach

Xiaoqi Tan

University of Toronto, Canada xiaoqi.tan@utoronto.ca

ACM SIGMETRICS 2020. Boston. Massachusetts. USA

Joint Work with

- Alberto Leon-Garcia, University of Toronto, Canada.
- Bo Sun, Danny H.K. Tsang, HKUST, Hong Kong SAR, China.
- Yuan Wu, University of Macau, Macau SAR, China.

- Known at the beginning:
 - single type of resource with capacity 1.
 - $\operatorname{supply} \operatorname{cost} f(\cdot)$ w.r.t. total allocated resources.

- Known at the beginning:
 - single type of resource with capacity 1.
 - supply cost $f(\cdot)$ w.r.t. total allocated resources.

- For $n = 1, 2, \cdots$
 - Agent *n* Arrives:
 - valuation and requirement of agent n: (v_n, r_n) .

- Known at the beginning:
 - single type of resource with capacity 1.
 - supply cost $f(\cdot)$ w.r.t. total allocated resources.
 - bounded value density, $\underline{p} \leq \frac{v_n}{r_n} \leq \overline{p}, \forall n = \{1, 2, \cdots\}$
- For $n = 1, 2, \cdots$
 - Agent *n* Arrives:
 - valuation and requirement of agent n: (v_n, r_n) .

- Known at the beginning:
 - single type of resource with capacity 1.
 - supply cost $f(\cdot)$ w.r.t. total allocated resources.
 - bounded value density, $\underline{p} \leq \frac{v_n}{r_n} \leq \overline{p}, \forall n = \{1, 2, \cdots\}$
- For $n = 1, 2, \cdots$
 - Agent *n* Arrives:
 - valuation and requirement of agent n: (v_n, r_n) .

- Known at the beginning:
 - single type of resource with capacity 1.
 - supply cost $f(\cdot)$ w.r.t. total allocated resources.
 - bounded value density, $\underline{p} \leq \frac{v_n}{r_n} \leq \overline{p}, \forall n = \{1, 2, \cdots\}$
- For $n = 1, 2, \cdots$
 - Agent *n* Arrives:
 - valuation and requirement of agent n: (v_n, r_n) .
 - Decision:
 - publish the price p_{n-1} for agent n.

- Known at the beginning:
 - single type of resource with capacity 1.
 - supply cost $f(\cdot)$ w.r.t. total allocated resources.
 - bounded value density, $\underline{p} \leq \frac{v_n}{r_n} \leq \overline{p}, \forall n = \{1, 2, \cdots\}$
- For $n = 1, 2, \cdots$
 - Agent *n* Arrives:
 - valuation and requirement of agent n: (v_n, r_n) .
 - Decision:
 - publish the price p_{n-1} for agent n.
 - Realization:
 - if $v_n p_{n-1}r_n \ge 0$: agent makes purchase, i.e., $x_n = 1$.
 - if $v_n p_{n-1}r_n < 0$: agent n leaves, i.e., $x_n = 0$.

- Known at the beginning:
 - single type of resource with capacity 1.
 - supply cost $f(\cdot)$ w.r.t. total allocated resources.
 - bounded value density, $\underline{p} \leq \frac{v_n}{r_n} \leq \overline{p}, \forall n = \{1, 2, \cdots\}$
- For $n = 1, 2, \cdots$
 - Agent *n* Arrives:
 - valuation and requirement of agent n: (v_n, r_n) .
 - Decision:
 - publish the price p_{n-1} for agent n.
 - Realization:
 - if $v_n p_{n-1}r_n \ge 0$: agent makes purchase, i.e., $x_n = 1$.
 - if $v_n p_{n-1}r_n < 0$: agent n leaves, i.e., $x_n = 0$.
- Welfare maximization: $\sum_{n} v_n x_n f(\sum_{n} r_n x_n)$.

- Known at the beginning:
 - single type of resource with capacity 1.
 - supply cost $f(\cdot)$ w.r.t. total allocated resources.
 - bounded value density, $\underline{p} \leq \frac{v_n}{r_n} \leq \overline{p}, \forall n = \{1, 2, \cdots\}$
- For $n = 1, 2, \cdots$
 - Agent *n* Arrives:
 - valuation and requirement of agent $n: (v_n, r_n)$.
 - Decision:
 - publish the price p_{n-1} for agent n.
 - Realization:
 - if $v_n p_{n-1}r_n \ge 0$: agent makes purchase, i.e., $x_n = 1$.
 - if $v_n p_{n-1}r_n < 0$: agent n leaves, i.e., $x_n = 0$.
- Welfare maximization: $\sum_n v_n x_n f(\sum_n r_n x_n)$

Supply Costs in Different Forms

- Cloud resource allocation with **operating costs**, e.g., power v.s. CPU utilization.

Supply Costs in Different Forms

- Cloud resource allocation with **operating costs**, e.g., power v.s. CPU utilization.

- Network resource allocation with link costs, e.g., delay v.s. throughput.

Supply Costs in Different Forms

- Cloud resource allocation with **operating costs**, e.g., power v.s. CPU utilization.

- Network resource allocation with link costs, e.g., delay v.s. throughput.

Competitive Ratio

- Offline Setting: knows all arrival information:

$$S_{\mathsf{offline}}(\mathcal{A}) = \sum_{n \in \{1,2,\cdots\}} v_n x_n^* - f\left(\sum_{n \in \{1,2,\cdots\}} r_n x_n^*\right),$$

where $A = \{(v_1, r_1), (v_2, r_2), \dots\}$ denotes an arrival instance.

Competitive Ratio

- Offline Setting: knows all arrival information:

$$S_{ ext{offline}}(\mathcal{A}) = \sum_{n \in \{1,2,\cdots\}} v_n x_n^* - f\left(\sum_{n \in \{1,2,\cdots\}} r_n x_n^*\right),$$

where $A = \{(v_1, r_1), (v_2, r_2), \dots\}$ denotes an arrival instance.

- **Online Setting**: develop posted prices, $\{p_n\}_{\forall n}$, whose competitive ratio:

$$\alpha \triangleq \max_{\mathsf{all possible}} \frac{S_{\mathsf{offline}}(\mathcal{A})}{S_{\mathsf{online}}(\mathcal{A})}$$

is bounded by a constant independent of the number of agents.

- Design a pricing function $\phi:[0,1]\to\mathbb{R}^+$:

$$p_n = \phi(y_n)$$

- Design a pricing function $\phi:[0,1]\to\mathbb{R}^+$:

$$p_n = \phi(y_n)$$

- Total resource utilization y_n after agent n:

$$y_n = \sum_{i=1}^n r_i x_i, n = 1, 2, \cdots$$

Design a pricing function $\phi:[0,1]\to\mathbb{R}^+$:

$$p_n = \phi(y_n)$$

- Total resource utilization y_n after agent n:

$$y_n = \sum_{i=1}^n r_i x_i, n = 1, 2, \cdots$$

- ∘ if $v_n p_{n-1}r_n \ge 0$, agent purchases ∘ if $v_n p_{n-1}r_n < 0$, agent leaves
- \circ bounded value density: $p \leq \frac{v_n}{r_n} \leq \bar{p}$

- Design a **pricing function** $\phi:[0,1] \to \mathbb{R}^+$:

$$p_n = \phi(y_n)$$

- Total resource utilization y_n after agent n:

$$y_n = \sum_{i=1}^n r_i x_i, n = 1, 2, \cdots$$

- Initialization: $y_0 = 0$ and $p_0 = \phi(y_0)$.

- \circ if $v_n p_{n-1}r_n \ge 0$, agent purchases
- \circ if $v_n p_{n-1}r_n < 0$, agent leaves
- \circ bounded value density: $ar{p} \leq rac{v_n}{r_n} \leq ar{p}$

- Design a **pricing function** $\phi:[0,1]\to\mathbb{R}^+$:

$$p_n = \phi(y_n)$$

- Total resource utilization y_n after agent n:

$$y_n = \sum_{i=1}^n r_i x_i, n = 1, 2, \cdots$$

- Initialization: $y_0 = 0$ and $p_0 = \phi(y_0)$.

- \circ if $v_n p_{n-1}r_n \ge 0$, agent purchases
- \circ if $v_n p_{n-1}r_n < 0$, agent leaves
- \circ bounded value density: $\underline{p} \leq rac{v_n}{r_n} \leq \overline{p}$

- Design a **pricing function** $\phi:[0,1] \to \mathbb{R}^+$:

$$p_n = \phi(y_n)$$

- Total resource utilization y_n after agent n:

$$y_n = \sum_{i=1}^n r_i x_i, n = 1, 2, \cdots$$

- Initialization: $y_0 = 0$ and $p_0 = \phi(y_0)$.

- \circ if $v_n p_{n-1}r_n \ge 0$, agent purchases
- \circ if $v_n p_{n-1}r_n < 0$, agent leaves
- \circ bounded value density: $\underline{p} \leq rac{v_n}{r_n} \leq \overline{p}$

- Design a **pricing function** $\phi:[0,1]\to\mathbb{R}^+$:

$$p_n = \phi(y_n)$$

- Total resource utilization y_n after agent n:

- \circ if $v_n p_{n-1}r_n \ge 0$, agent purchases
- \circ if $v_n p_{n-1}r_n < 0$, agent leaves
- \circ bounded value density: $\underline{p} \leq \frac{v_n}{r_n} \leq \overline{p}$

- **P1**: accept agents regardless of their value densities up to a certain threshold $\omega \in (0,1]$.
 - $\phi(y) = p$ must hold in $y \in [0, \omega]$.

- **P1**: accept agents regardless of their value densities up to a certain threshold $\omega \in (0,1]$.
 - $\phi(y) = p$ must hold in $y \in [0, \omega]$.

$$\boxed{\alpha \geq \frac{S_{\text{offline}}(\mathcal{A}_{\underline{p}})}{S_{\text{online}}(\mathcal{A}_{\underline{p}})} = \frac{\underline{p}\underline{\rho} - f(\underline{\rho})}{\underline{p}r_1 - f(r_1)} \xrightarrow{r_1 \to 0} + \infty}$$

$$\mathcal{A}_{\underline{p}}=\{(v_1,r_1),(v_2,r_2),\cdots\}$$
 with $\frac{v_n}{r_n}=\underline{p}$ for all n .

- **P1**: accept agents regardless of their value densities up to a certain threshold $\omega \in (0,1]$.
 - $\phi(y) = p$ must hold in $y \in [0, \omega]$.

$$\boxed{\alpha \geq \frac{S_{\text{offline}}(\mathcal{A}_{\underline{p}})}{S_{\text{online}}(\mathcal{A}_{\underline{p}})} = \frac{\underline{p}\underline{\rho} - f(\underline{\rho})}{\underline{p}r_1 - f(r_1)} \xrightarrow{r_1 \to 0} + \infty}$$

$$\mathcal{A}_{\underline{p}} = \{(v_1, r_1), (v_2, r_2), \cdots\}$$
 with $\frac{v_n}{r_n} = \underline{p}$ for all n .

- **P1**: accept agents regardless of their value densities up to a certain threshold $\omega \in (0,1]$.
 - $\phi(y) = p$ must hold in $y \in [0, \omega]$.

- P1: accept agents regardless of their value densities up to a certain threshold $\omega \in (0,1]$.
 - $\phi(y) = p$ must hold in $y \in [0, \omega]$.
- **P2**: increase the price when fewer units are remaining.
 - $\phi(y)$ must be increasing in $y \in [\omega, 1]$.

- P1: accept agents regardless of their value densities up to a certain threshold $\omega \in (0,1]$.
 - $\phi(y) = p$ must hold in $y \in [0, \omega]$.
- **P2**: increase the price when fewer units are remaining.
 - $\phi(y)$ must be increasing in $y \in [\omega, 1]$.
- P3: sell the resource at a profitable price.
 - $\phi(y) > f'(y)$ must hold for all $y \in [0, 1]$.

Design Parameters

$$\phi(y) = \begin{cases} \frac{p}{\varphi(y)} & \text{if } y \in [0, \omega) \\ \varphi(y) & \text{if } y \in [\omega, 1] \\ +\infty & \text{if } y \in (1, +\infty) \end{cases}$$

Design Parameters

$$\phi(y) = \begin{cases} \underline{p} & \text{if } y \in [0, \omega) \\ \varphi(y) & \text{if } y \in [\omega, 1] \\ +\infty & \text{if } y \in (1, +\infty) \end{cases}$$

The flat segment ω and the increasing segment $\varphi(y)$.

• Flat-Segment: ω should satisfy

$$\left[\underline{p}\omega - f(\omega) \geq rac{1}{lpha} hig(\underline{p}ig) \; \mathsf{and} \, f(\omega) \leq \underline{p},
ight]$$

where h(p) is defined as $h(p) \triangleq \max_{y \in [0,1]} py - f(y)$.

• Flat-Segment: ω should satisfy

$$\left[\underline{p}\omega - f(\omega) \geq rac{1}{lpha} h(\underline{p}) \; \mathsf{and} \, f(\omega) \leq \underline{p},
ight]$$

where h(p) is defined as $h(p) \triangleq \max_{y \in [0,1]} py - f(y)$.

• Flat-Segment: ω should satisfy

$$\boxed{ \underline{p}\omega - f(\omega) \geq rac{1}{lpha} h(\underline{p}) \; \mathsf{and} \, f(\omega) \leq \underline{p}, }$$

where h(p) is defined as $h(p) \triangleq \max_{y \in [0,1]} py - f(y)$.

• Increasing-Segment: φ should satisfy

$$\begin{cases} \varphi'(y) \leq \alpha \cdot \frac{\varphi(y) - f'(y)}{h'(\varphi(y))}, y \in (\omega, 1), \\ \varphi(\omega) = \underline{p}, \varphi(1) \geq \overline{p}. \end{cases}$$

• Flat-Segment: ω should satisfy

$$\boxed{\underline{p}\omega - f(\omega) \geq rac{1}{lpha}h(\underline{p}) \; \mathsf{and} \, f(\omega) \leq \underline{p},}$$

where h(p) is defined as $h(p) \triangleq \max_{y \in [0,1]} py - f(y)$.

• Increasing-Segment: φ should satisfy

$$\begin{cases} \varphi'(y) \leq \alpha \cdot \frac{\varphi(y) - f'(y)}{h'(\varphi(y))}, y \in (\omega, 1), \\ \varphi(\omega) = \underline{p}, \varphi(1) \geq \overline{p}. \end{cases}$$

Online Primal-Dual Approach

Main Results: Optimality and Uniqueness

• Optimality: the optimal competitive ratio is

$$oxed{lpha_* = rac{h(ar{p})}{ar{p}\omega_* - f(\omega_*)}}$$

Main Results: Optimality and Uniqueness

Optimality: the optimal competitive ratio is

$$\alpha_* = \frac{h(\underline{p})}{\underline{p}\omega_* - f(\omega_*)}$$

• Uniqueness: there exist a unique ω_* and φ_* .

$$\left\{egin{aligned} & \varphi_*'(y) = lpha_* \cdot rac{arphi(y) - f'(y)}{h'\left(arphi(y)
ight)}, y \in (\omega_*, 1), \ & arphi_*(\omega_*) = ar{p}, arphi_*(1) = ar{p}. \end{aligned}
ight.$$

Main Results: Optimality and Uniqueness

• Optimality: the optimal competitive ratio is

$$\boxed{\alpha_* = \frac{h(\underline{p})}{\underline{p}\omega_* - f(\omega_*)}}$$

• Uniqueness: there exist a unique ω_* and φ_* .

$$egin{cases} egin{aligned} egin{aligned} arphi_*'(y) &= lpha_* \cdot rac{arphi(y) - f'(y)}{h'\left(arphi(y)
ight)}, y \in (\omega_*, 1), \ arphi_*(\omega_*) &= ar{p}, arphi_*(1) &= ar{p}. \end{aligned}$$

Remarks: i) ω_* depends on f, p, and \bar{p} and ii) $\varphi'_*(y) = \alpha_* \cdot \Phi(\varphi_*, y)$.

General Cases: Strictly-Convex Supply Costs

Case-1:
$$\underline{c}$$

Case-2:
$$\underline{c} < \overline{c} \leq \underline{p} \leq \overline{p}$$

Case-3:
$$\underline{c} < \underline{p} \leq \overline{p} \leq \overline{c}$$

Special Cases: Zero and Linear Supply Costs

- Given $S = \{f, p, \bar{p}\}$ with f(y) = qy, where $q \ge 0$, there exists a unique ϕ_* :

$$\phi_*(y) = \begin{cases} \frac{p}{(p-q)} \cdot \exp\left(\frac{y}{\omega_*} - 1\right) + q & \text{if } y \in [0, \omega_*), \\ +\infty & \text{if } y \in [\omega_*, 1], \\ & \text{if } y \in (1, +\infty), \end{cases}$$

such that PM_{ϕ_*} is α_* -competitive, where α_* and ω_* are given by

$$\alpha_* = 1 + \ln\left(\frac{\bar{p} - q}{p - q}\right), \quad \omega_* = \frac{1}{\alpha_*}.$$

Special Cases: Zero and Linear Supply Costs

- Given $S = \{f, p, \bar{p}\}$ with f(y) = qy, where $q \ge 0$, there exists a unique ϕ_* :

$$\phi_*(y) = \begin{cases} \frac{p}{\underline{p}} & \text{if } y \in [0, \omega_*), \\ (\underline{p} - q) \cdot \exp\left(\frac{y}{\omega_*} - 1\right) + q & \text{if } y \in [\omega_*, 1], \\ +\infty & \text{if } y \in (1, +\infty), \end{cases}$$

such that PM_{ϕ_*} is α_* -competitive, where α_* and ω_* are given by

$$lpha_* = 1 + \ln\left(rac{ar{p} - q}{p - q}
ight), \quad \omega_* = rac{1}{lpha_*}.$$

Remark: the logarithmic competitive ratio is not new, see [42] for details.

A Unified Approach

- zero supply costs: $\alpha_*=1+\ln\left(rac{ar{p}}{p}\right)$ when f(y)=0 (e.g., [41], [42]).
- linear supply costs: $\alpha_*=1+\ln\left(\frac{\bar{p}-q}{p-q}\right)$ when f(y)=qy with q>0 (e.g., [41]).
- strictly-convex supply costs: $\alpha_* = \frac{h(\underline{p})}{p\omega_* f(\omega_*)}$.

A Case Study: Quadratic Supply Costs

Figure: Illustration of α_* when $f(y) = \frac{1}{2}y^2$. Left: $\underline{p} = 0.3$. Right: $\underline{p} = 1.1$.

Conclusions

- A **unified** approach for online resource allocation.
 - characterization of optimal competitive ratios.
 - computation of optimal pricing functions.

Conclusions

- A **unified** approach for online resource allocation.
 - characterization of optimal competitive ratios.
 - computation of optimal pricing functions.
- A **general** model that can be extended to more complex settings.
 - multi-knapsack problems.
 - multi-unit auctions and combinatorial auctions.

- ..

Thank You

Email: xiaoqi.tan@utoronto.ca Homepage: https://xiaoqitan.org